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In simulations of systems with pericdic boundary conditions, the
Ewald image method is used to evaluate long-range potentials by
constructing infinite but rapidly converging sums in both real space
and reciprocal space. However, the traditional Ewald construction
is not optimal for the case where the real and reciprocal space sums
are truncated. We derive a criterion which is used to determine
the accuracy of a given approximation and use this criterion to
determine the optimal separation of a very general class of poten-
tials, subject to cutoffs, k. and r., in reciprocal and real space, respec-
tively. Using a basis of locally piecewise-quintic Hermite interpo-
lants, we demonstrate our procedure and show that for the Coulomb
potential, the errar is proportichal to expl—kr). At typical cutoff
values we find the optimized breakup to be two orders of magnitude
more accurate than the standard Ewald breakup for a given compu-
tational effort. ® 1985 Academic Press, Inc.

L. INTRODUCTION

In simulation methods such as classical Monte Carlo (MC),
molecular dynamics (MD), and guantum Monte Carlo (QMC),
the presence of long-range potentials and pair wavefunctions
requires the careful use of the method of images in periodic
boundary cenditions (PBC). The potential or pair wavefunction
due to a given particle and all its images converges slowly in
real space, but it is possible to divide the sum into parts in real
space and reciprocal space, each of which converges rapidly
[1, 2].

It is important for several reasons that the periodic image
potential be accurately computed. First, it enables one to easily
specify the conditions of the simulation, aliowing comparisons
between different computer codes. Second, the image potential
yields results closer to the thermodynamic limit. For example,
since the random phase approximation is exact at long wave-
lengths, accurate Fourier components of the potential must be
used to guarantee the correct long wavelength properties of a
charged system. Finally, it is easier to perform model calcula-
tions, such as Hartree—Fock on a simulation cell with the exact

image potential and then to use those results to extrapolate to
the bulk limit.

We assume that the interaction between two particles is given
by a spherically symmetric potential V(|r|), where |r| is the
radial distance between the two particles. We further assume
that V can be split into a short-range piece which vanishes for
r greater than r, and a part that is Fourier transformable. The
image potential is defined by summing over the interaction
between a particle and the replicas of the other particle in
periodic space,

V(r) = EII V(e + 1) (L)

Here | are the Bravais lattice vectors of the simulation box,
Le., (nl. nL, nL), where n, n, n, are integers and L,, L,,
L, are the dimensions of the box. Applying the Poisson sum
formula [3] we have

Vy(r) = ; Vielr, (2)

where k are the reciprocal lattice vectors of the periodic box,
k = 2n{n/L,, ndL,, nJL}, and

1 |
V=g [, &re v @, 3)

The volume of the simulation box is 0 = L,L,L,.

The effect of PBC is that the ‘‘bare’” potential is used on a
discrete lattice in k-space, i.e., only those k vectors that are
reciprocal lattice vectors of the simulation box. As the size of
the system increases, that set becomes more dense. In the limit
of an infinitely large box that set is continuous.

Both the real space and k-space forms of this potential, V(r),
involve infinite sums and are not convenient for computation
since they may be very slowly convergent. But if the sum is
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broken into a part in real space and a part in k-space, both sums
can converge exponentially fast. In the case of the Coulomb
potential, where V(r) = 1/r and V, = 4w/Q%, the standard
breakup [1] which uses a Gaussian charge distnbution gives

B Texd

kz

4 ‘ 1
Vy(r) = 67721‘: eivr + Z =1 erfe{GL -1}, )

where G is a parameter chosen to optimize the convergence
properties in k-space and real space.

In this paper we show how to optimally construct this
breakup, independent of the actual potential, V, and subject to
real and reciprocal space cutoffs. Thus we generalize and opti-
mize methods used by Ewald for the Coulomb interaction.
Preserving the general form of the Ewald separation, we approx-
imate the image potential by a sum in k-space and a sum in
real space,

Vr) = Z Wilr + 1)) + NZ‘_ Yie %, (5)

where V,(r) is an approximation to V,(r) because &, is finite.
W(r} is chosen to vanish smoothly as |r| approaches r., where
r. is less than half of the distance across the simulation box in
any direction. This constraint makes W(r) a function of the
minimum distance of a particle to any image, prevents overlap
of the real space contribution between images, and avoids the
sum over all lattice vectors. If either r, or k, goes to infinity,
of course V, — V,.

So far we have only discussed calculations on long-range
potentials, which are all that is needed in classical mechanics.
In guantum simulations, the image method must be used to
represent long-range pair wavefunctions as well. For example,
in using vanational or diffusion Monte Carlo, the trial wave-
function must be periodic and differentiable throughout the
simulation cell. A pair product trial wave function includes
the factor

YR} = exp ( > ullr = r;l))- (6}

i<y

The arguments presented above for classical long-range poten-
tials, apply directly to the pair function w(r} if it is long-range.
For charged particles, one difference from the classical situation
is that the pair functions are analytically simple in k-space and
not in real space. They are typically not a single inverse power
law. For example, the RPA pair wavefunction for the electron
gas has the form [4]

1
=55 (= 1+ VI + 12rJk). 7

Since the method described here requires only the Fourier repre-
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sentation of the periodic function, this presents no additicnal
complications.

To summarize, we derive a criterion to measure the accuracy
of an approximate potential used in the simulation of a system
of N particles. Given this accuracy measure, we derive and
evaluate an algorithm which has been used extensively by one
of us (DMC), but not previously published. This algorithm
determines the optimal breakup of the exact potential into sums
in real and reciprocal space subject to truncation at r, and &,.
Section 2 discusses a completely general, basis-independent,
derivation of the optimal breakup. Section 3 chooses a basis
of locally piecewise-quintic Hermite interpolants (LPQHI) to
demonstrate the procedure. Section 4 presents results using the
LPQHI basis on the Coulomb potential and Section 5 outlines
our conclusions.

11. OPTIMIZATION OF THE BREAKUP

It is shown in the Appendix that to minimize error in the
potential, it is appropriate to minimize the mean squared differ-
ence, x>, between V,(r) and its approximation V,{r),

2 1 > —ikr :
x= g dr (v,,(r) ~W(r) — Il;& Yook ) C®

To optimize with respect to ¥, and W(r), expand W(r) in an
arbitrary basis of J radial functions A,(r),

J

W(r) = 2, th(r), (9)

n=1

with unknown coefficients ¢,. The set of ¥, which minimizes
5.
X is

J
Yo=Vi— > culs. (10)
n=]

where

_l Te Jin,—iKT] (4
e = g | Cre () (11)

and V; are the Fourier components of V,(r) from Eq. (3). Note
also that V, = V_jand Y, = Y_,. Using Fq. (2), Eq. (9), and
Eq. (10), we may reduce Eq. (8) to

J

J 2
=g ae (3 v = inn + 3 Y e ) (2)
Q/a &>k,

n=1 Hjik n=1

©

J 2
> :) (13)

[k[>k, n=1

1
= ﬁfn dr ( > Vie*

[GEI
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(14)

1 . 2
=—| dr vt | V= 2, cuty )
o (Z e (v-Ze)
Now expand out the squared term to get
xz - _l_f dr ( Z gkTe—ikT
QJa \‘;& KT,
J S
(Vk - z antn)(vk‘ - 2 Cn'k'tn’))v
ﬂ:] n“=l
Taking the derivative with respect to ., we have
oy’ : "
l. = 2 j dr (Z Z elk-re—!k ‘T
or, (Jn [+, 1654,
J
(Vk - z Cukrn) Cn'k')-
n=1

Doing the integral on r results in a delta function and cancels
the factor of £}

ax’? !
=2 Z Z O | Vi + 2 Cailn Cu'k') (17)
at, >k, KT, =1
i
=2 (Z (Vi + E Cuktn) C"‘k‘)-
>k, n=1

Finally, setting this derivative to zero we have a set of linear
equations,

(15}

(16)

(18)

J

E z CieCrily = Z Vicy.
>4,

n=1 Wk

(19)

©

To summarize, the procedure to find the optimal breakup is
first to calculate V; and the ¢, as defined in Eq. (11). Then the
linear set of Eqgs. (19) is solved for z,. The singular value
decomposition (SVD) [5] method is used to solve the equations
for ¢,. because the matrices are ill-conditioned. Finally, from
Eq. (15) it is easy to show that

1= Yi.

K>,

(20)

There are several parameters which will determine how
closely V, approximates V. The teal space cutoff, r., is usually
taken to be one-half the shortest length across the simulation
cell, so at most one image will contribute to the sum. The k-
space cutoff, k;, determines the number of k vectors used in
the sum and the accuracy of the approximation. In Eq. (19),
the sums are taken over the values of & for |k| > k,. In practice
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we sum for k, < |k| = K. If K is chosen too small, the procedure
can become unstable. K and the number of basis functions, J,
are increased until it is clear that x? is converged.

Minimizing x? will get the best breakup for the potentiai but
not necessartly for its derivatives. These are needed in quantum
Monte Carlo because the second derivative of the pair function
is used in the expression for kinetic energy. Wild variations of
the second derivative near the endpoints would introduce error
into the kinetic energy calculation. Likewise, in classical simo-
lations it is often desirable to minimize error in the forces which
are proportional to the first derivative of V. These cases result
in minor modifications to Egs. (19). For example, we find
that to minimize the error in the first derivative Eq. (19) is
replaced by

kZC,'kC,,k!_,, = Z kZVkCM. (21)
BE%

n=1 [k[=k,

This can be seen by writing a new expression for x* which
minimizes the error in the forces,

I= l — f =ikr !
3 jn dr { V) VW(r)Jri%: kY™t ) . (22)

Again taking the derivative with respect to ¥, and substituting
back in Eq. (22) with Eq. (9) and Eq. (3} we find

1 ] 4 i
= dgr —ikV; '*'f—; —ikeute®t) . (23

Taking the derivative with respect to ¢, as before we arrive at
Eq. (21) with the final expression faor x* being

X: = Z kY3
k4,

The results of this section are completely general and inde-
pendent of the basis functions, k,(r), chosen to represent the
short-range real space function W(r}. In the next section we
describe the implementation of the method with a piecewise
polynomial basis.

(24)

IiL. THE LPQHI BASIS

We now need to choose a basis to represent W(r), keeping
in mind that for a Coulomb potential this is an error function,
a function which is rapidly decreasing at large r. To illustrate
our method we have chosen to use fifth-order polynomials,
defined on intervals (r;, r4 ), where r; are the knot values. We
use m + 1 equally spaced knots starting at 0 and ending at r..
Hence n = Ai, 0 =i =m+ 1, and A = r./m. This basis
is known as a locally piecewise-quintic Hermite interpolant
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{LPQHTI). 1t should be emphasized that this choice of basis is
not unigue. The argument of Section 2 is independent of the
basis chosen. The advantages of this basis are that it is applica-
ble to rapidly varying functions, it is not seriously overcomplete,
it is easily expandable through the addition of more knots, and
it accommodates constraints at the endpoints. For example, to
set the first derivative at the origin to the known cusp value,
one simply removes this variable from the fit.

Our unknown variables are the values of W(r) and its first
and second derivatives at the knot values, which we denote
1, = 1, , where i is the knot value with 0 =</ =< m and o is
the derivative 0 = o = 2. We include second derivatives
because it is important to have smooth second derivatives in
QMC. A fifth-order polynomial is then used to interpolate be-
tween the knots.

The basis functions corresponding to this choice of parame-
terization of W(r) are piecewise-quintic interpolants that have
a single derivative equal to unity and the other derivatives
vanishing. Our basis functions are, therefore,

5 A
(A)u E San (r r’) L] ¥ <r= Fizry
n=0 A

; = > - — r\" 25
hm(r) (_A)ﬂ Z S(\m (ri r) » Fim1 <r= Fis ( )
n={ A
0, otherwise,
where [6]

10 0 —-10 15 -6
§5.,=|0 1 0 —6 8§ -3 (26)

004 -3 & —

(Note the addition of a new index that describes the derivative
of W.) Figure i shows half of the functions A, hy, and &;,
the other three functions being merely mirror images.

The required ¢, are here ¢, and are calculated as

Cink = é J;c d3re” ™ h(r) (27)
5
= A Sul D + D — 1), (28)
n=0
where
D =% % g3y @ik (_r ; r;) ) 29

This integral can be calculated recursively as follows. If we
define
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FIG. 1. The upper basis functions k, b, fi; in an arbitrary interval 1.
The lower functions arc obtained by reflecting x — —x.

Ej =% % I dret (”—;—”) (30)

then
Dy, = AIm{Ef,+, + P EL) (31)
For n = 0, Ei, can be evaluated and for n > 0; Ej, may be

calculated by integrating by parts. For example,

4mi

Ejs= =+ TE (=™ — e, 32)
and for n > 0,
+ ‘[ 4’” — 1yt ik " x
E,-in:—z m(—l) e 'i'—EE.-I,,un . (33)

In the case of the Coulomb potential, there is a singularity
at r = 0, which will also be present in W(r). Since this would
make tabulation of the function difficult and less accurate for
small r, we find it beneficial to incorporate the singularity into
the basis functions,

1< r—r\"
hm = S.,m 1, 34
n=-"2 ( 3 ) (34)
so that the new equation for D, is
Dy, = Im{Eg} (35)
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Using the Dy, from Eq. (35) in the expression for ¢, in Eq.
(28}, we are in a position to solve the set of linear equations
Eq. (19) for t,. The t, are then used to construct W(r) and the
Fourier sum.

IV. RESULTS FOR THE COULOMB POTENTIAL

To evaluate the behavior of the optimized fit using the LPQHI
basis, x* was calculated for various values of r. and k. for
the Coulomb potential. We used m = 40 knots and KL was
approximately 3000, where L is the size of the cubic simulation
cell. These values for m and K resulted in good convergence
in % We find that the rms error in the fit is well described by
the equation

x ~0.77 %e-“cn—. (36)

We also computed x? for the usual Ewald breakup, subject to
the same real space and k-space cutoffs,

erfe(Gll — r)®(r, — |r)

Viu(T) = &2 {Zl !

=l )
dm 6—52.'462
—_ ik
0 [i]=<k, Kt ¢ ’

Note that the function 0 is defined as 1 when its argument is
positive, and 0 otherwise. An expression for x* can be derived
Jjust as before. If this is put entirely into £-space and the integra-
tion over r is done we get

x?= 2 Al (38)
P
where
_dger |1 1, .
i [E % fo dr sin{kr) erfe(Gr)
(39
e—k’m}2
— k| — .
7 Okl kc)]

The value of G which minimizes x? is found to be approxi-
mately Vk/2r.. Note that the sum, Eq. (38), is over all points
in k-space, not just |k| > k., because the real space function is
cut off at r.. This sum may be transformed into an integral

175

27:7.15

N o
; |
I A

%% “oq

= C ". Ewald I
H 6_'_ %O Aom g
- I ' .
o — & . ]
V] o *, A
= -8 82 F) A a
o2 { k =1.66 u E
= 10f * 0 +
S C ™ kc=2'46 £ 1
-12—|? ¢ k =3.06 o . i"t%‘ T
r timized fi ]
14k A k=348 OF o, 41
16 I I 5
0 5 kr 1o 15

¢ cC

FIG. 2. Ln[x/(e*L)] versus the dimensionless parameter k.. for various
values of k.. The open symbols represent results for the optimized fit and the
filled symbols represent results {or the cutoff Ewald case.

over k-space and then done numericatly. Figure 2 shows
Ln[x/(e*/L)] versus k.r., for the optimized fit and the truncated
Ewald case. For values of k. and #, of practical interest, our
procedure gave up to a factor of 100 improvement in accuracy
over the usual breakup. Figure 3 gives the same plot, but for
x* which minimizes forces as described by Eq. (22). It shows
Ln|x/(e*/L%)] versus k.r.. This also demonstrates the superiority
of the optimized breakup when minimizing the error in forces.
We find that codes using optimized breakups tun twice as
fast (for the same accuracy) as the standard breakup. Figure 4
compares the charge associated with the potential W(r} from
the optimized fit with the Ewald case, using Poisson’s equation

4 1 I ]
2% T
r !& ]
o~ 0 % 0
o E ‘.‘. Ewald ]
d -2 & e T
~ r e -A.. ]
s g & a - 1
= -4 dRo ™ ]
R o k=1.66 (g “
g 8T w k=2.46 B n
= gL e k=306 " T
C A Kk =3.48 Optimized fit 1
-10 - e Tt OA LT
-12 — = 4
0 5 kr 10 15
ce

F1G. 3. Lnlx/e"/£?)] versus the dimensionless parameter k.r, for various
values of k.. This is the x defined by Eq. (22) which mintmizes the error in
the forces. The open symbols represent results for the optimized fit and the
filled symbols represent results for the cutoff Ewald case,
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FIG. 4. Charge density p associated with the short range potential W(r)
versus r/L, for both the optimized fit and the cutoff Ewald case, where
ker. = 133,

VW (r) = dmp. (40}
The optimized density is more spread out but still decays to
zero at the edge of the box, while a Gaussian is constrained to
be more peaked to ensure that it is small enough at the edge.
The optimization takes full advantage of the increased flexibil-
ity. Figure 5 compares LnfY,] for these two cases and shows
that the Founier components of the optimized fit decay faster
than those for the truncated Ewald.

While y is a measure of the total error in the unit simulation
cell, it does not indicate where in the unit cell that error is
Jargest. Figure 6 is a plot of the integrand of Eq. (15) in a plane
which slices through the center of the simulation cell. The
numbers give a relative sense of where error is the largest.
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FIG. 5. Ln[¥,] versus kL, for both the optimized fit and the cutoff Ewald
case, where k., = 13.3,
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1t is of interest to find how computation time for a simulation
step scales with the number of particles, N, for the Coulomb
potential. The time for the real space sum will be proportional
to Nri because for N particles we must consider all the particles
in a sphere with radius r.. The time for the k-space sum will
be proportional to Nk because again there are N particles and
the number of k-vectors to sum over is proporiional o &
multiplied by the density in k-space, which is proportional
to the unit cell volume and consequently to N. In this case
computation time is equal to a\Nv} + @N with «, and a,
dependent on programming details. Using Eq. (36) for &, in
terms of x and r, and optimizing time with respect to r., we
find that
CPU time o< (N Log[N])*~. (41)
It is worth noting that in evaluating this expression, we have
used the criterion defined by Eq. (46), which demonstrates that,
for equivalent accuracy, x should scale as N™*2, [gnoring this,
we would get 7 o« N¥ which is the usual expression given
for the Ewald method.

V. CONCLUSIONS

We have presented a general method for optimizing the
representation of long-range functions in simulations. As in the
traditional Ewald method, the function is separated into finite
reciprocal and real space sums. The procedure takes as input
the Fourier components of the infinite system potential and
computes a short-range real space function and the Founer
coefficients for the sum on k vectors. Qur procedure yields the
optimal breakup of the potential into sums of this form.

We find improved performance over the standard method.
Additionally we find that the rms error, ¥, is proportional
to exp(—kr) and that the computation time scales as
(N Log(N])* for calculations of equivalent accuracy. The
method described here is useful for classical and quantum sys-
tems, with long-range potentials and wavefunctions. The pro-
cedure is purely numerical and can be totally automated. It
does not require any special properties of the potential. This is
particularly useful when the potential or wavefunction is not a
pure power law. If the potential contains a part at small » which
is not Fourier transformable then that part can be removed and
put directly into W(r).

Other methods exist for the calculation of long-range forces
and potentials. The traditional Ewald method is specific to the
Coulomb potential and has been shown above to be unoptimized
in cases where there are cutoffs in real and reciprocal space.
There is also a class of order(N) algorithms developed by
Greengard [7]. The Greengard method becomes more efficient
{8] than traditional methods in periodic boundary conditions
in three dimensions for N = 1000-8000, depending on the
desired precision. Simulations are often done with significantly
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FIG. 6. The error between the optimized potential V, and the true potential V, plotted in a plane which passes through the center of the simulation cell.

The function plotted is the integrand of Eqg. (13).

fewer particles. In addition, the Greengard method, with its
multipole expansion formalism, has not yet been extended 10
arbitrary potentiais and only achieves a speedup when the total
potential energy is being computed, e.g., in MD. For MC meth-
ods, where particles are moved one at a time, order(N) algo-
rithms are not known.

VI. APPENDIX: DERIVATION OF THE x* MEASURE

Let us consider how accurate a representation of the potential
or pair function is needed. Consider first classical Monte Carlo.
To sample the correct distribution, the change in potential di-
vided by kgT as one particle is moved must be computed and
compared to the logarithm of a random number to decide
whether the move will be accepted. Clearly the results will not
be seriously affected if the accuracy in the energy difference
is less than &, where & <€ 1.

Consider a trial move from 1, to r/. The error in the potential
of the particle at r;, due to the use of the approximation Eq.
{3), can be written as a Fourier expansion in k-space,

e(r) = 3, (Vy(r, = 1) = Vi(r, — 1)
i#f (42)

= i Z e P,

# k

We show below that ¥, is the same ¥, defined in Eq. (5). The
mean squared error in the difference in potential energy between
r; and r; which comes into the acceptance probability is

{AV P = (le(r)) — e(x))[}
4 (43)

where the brackets indicate averages over the points r; and

r; and p, = 2 ¥, Using the definition for the structure factor,
S, = (1/NXpyp_,) it can be shown in the limit of large N that

= <}2 Filpy — e (e 5 — e
k

{(AVY) =2 N D, 715,. 44y

When the optimization procedure is performed as outlined in
Section 2 the difference in the Fourier coefficients of V, and
V, is zero for [k| = k. and it is Y, for |k| > k.. Also, for large
k, S, =~ 1. Hence,

{(AV)) = 2N ; Yi=2Nx% (45)
[K[=4,

with x? defined in Eq. (8). In classical Monte Carlo, let us
assume that we need (AV%*¥ < ekgT. This implies that
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< EkBT
VN

(46)

We have derived an expression to determine how good x should
be in a classical simulation and we have shown that to minimize
error in the potential it is appropriate to minimize % as defined
by Eq. (8).

The equivalent results for quantum systems will be obtained
by replacing kT with 1. If there are inaccuracies in the trial
function, they will increase the variational energy. In variational
Monte Carlo, the potential energy is only averaged over. It
does not directly affect the random walk. Thus one only needs to
make an unbiased estimate of the image potential. Nonetheless,
accurate trial functions lead to low variances. It is inefficient
if the variance of this estimate contributes to the total variance
of the simulation. Similar remarks apply to Green’s function
Monte Carlo and diffusion Monte Carlo, but in these cases
inaccuracies in the trial function only increase the variance of
the computed ground state energy as long as they are sufficiently
small. Therefore we feel that a reasonable criterion for the
accuracy of the pair function in QMC is x < e/ V2N.
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